
Technical Report

CMU/SEI-87-TR-14
ESD-TR-87-115

Carnegie-Mellon University

Software Engineering Institute

The Use of Representation Clauses
and Implementation-Dependent
Features in Ada:

I. Overview
B. Cralg Meyers

Andrea L Cappelllnl

July 1987

A0A2WLO

Technical Report
CMU/SEI-87-TR-14

ESD7TR-87-115
July 1987

The Use of Representation Clauses
and Implementation-Dependent

Features in Ada:
I. Overview

B. Craig Meyers
Andrea L. Cappellini

Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Daniel Burton
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by the Software Engineering Institute

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other US Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering,
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce. Springfield. VA 22161

Ada is a registered trademark of the U.S. Department of Defense. Ada Joint Program Office MicroVAX, VAX, VAXELN, and VMS
are trademarks of Digital Equipment Corporation

Table of Contents
1. Introduction 1

2. The Problem Domain 3

3. Discussion of Representation Clauses and Implementation-Dependent 5
Features in Ada
3.1. Introduction 5
3.2. Pragmas Pack, Optimize, and Shared 6
3.3. Type Representation Clauses 7

3.3.1. Length Clauses 7
3.3.2. Enumeration Representation Clauses 8
3.3.3. Record Representation Clauses 9

3.4. Address Clauses 10
3.5. Representation Attributes 10
3.6. Compiler Support 11

4. A Basic Design Model 13
4.1. Introduction 13
4.2. Data Abstraction 13
4.3. Affecting Multiple Representations 14
4.4. Unchecked Conversion 15

5. Examples 17
5.1. Introduction 17
5.2. An Introductory Example 17
5.3. An Example of Integer Types 18
5.4. An Example of Fixed-Point and Floating-Point Types 18
5.5. An Example of Analog Conversion 19
5.6. Calculation of Message Checksums 21

6. The Use of Assembler Language 23
6.1. Introduction 23
6.2. Discussion: Pragma Interface 23
6.3. An Example 23

7. Guidelines for Design 27
7.1. Introduction 27
7.2. System Requirements 27
7.3. Implementation Plan 27
7.4. Knowledge of the Compiler To Be Used 28
7.5. Interfacing Code Developed on Different Compilers 28
7.6. Grouping Implementation Dependencies Together 28
7.7. Using Numeric Values in Length and Record Representation Clauses 29

CMU/SEI-TR-14

7.8. Pragma StorageJJnit
7.9. Referencing Storage
7.10. Run-Time Issues
7.11. Use of Different Compilers in Development
7.12. Knowledge of Support Facilities

8. Summary

References

Appendix I: Figures

29
29
30
30
30

31

33

35

CMU7SEI-87-TR-14

The Use of Representation Clauses
and Implementation-Dependent Features

in Ada:
I. Overview

Abstract: This report, the first in a series, presents an overview of the aspects of the Ada
language relating to representation clauses and implementation-dependent features. Par-
ticular emphasis is given to the use of Ada for application to packed data structures. This
report is in part tutorial, and several examples from real-time, mission-critical systems are
discussed in detail. A brief discussion of design guidelines for the use of representation
clauses and implementation-dependent features is included.

1. Introduction
The Ada language has now been mandated by the Department of Defense (DoD) for use in real-time,
mission-critical systems as noted in reference [1]. There are many issues which must be given
consideration for the application of Ada to such systems. These issues apply to the compiler as well
as the run-time environment support.

It is the purpose of this report to present a discussion of the issues relating to the use of represen-
tation clauses and implementatton-dependent features in Ada. The discussion is based on examples
from characteristic real-time, mission-critical systems. This discussion is in part tutorial. That is, a
brief overview of the aspects of Ada relating to representation clauses and implementation-dependent
features is provided. Additionally, examples are discussed from a tutorial viewpoint. In this sense,
this report may serve as an introduction to the use of representation clauses and implementation-
dependent features in Ada.

This report is organized in the following manner: Chapter 2 provides an overview of the problem
domain to which representation clauses and implementation-dependent features are applicable.
Chapter 3 gives an overview of those features of the Ada language which are applicable to this
domain. A basic design principle, and the use of representation clauses from a global perspective,
are provided in Chapter 4. Chapter 5 presents several case study examples of the use of represen-
tation clauses and implementation-dependent features. The use of assembler language is discussed
in Chapter 6. Chapter 7 lists a set of design guidelines for considered use of representation clauses
and implementation-dependent features. A summary of the report appears in Chapter 8. Finally,
Appendix I groups together the figures for this report to improve the continuity of the text.

This is the first in a series of reports dealing with the use of representation clauses and
implementation-dependent features in Ada. The principal focus of the present report is in part tutorial
and case study in nature. The second report, reference [2], provides a set of questions deemed
relevant to the evaluation of support for representation clauses and implementation-dependent fea-

CMU/SEI-TR-14

tures provided by an Ada compiler. These questions are then related to a general experimental
context described in reference [3]. A qualitative assessment of the VAX Ada compiler may be found in
reference [4]. In summary, references [2] and [3] provide a basis for evaluation of a particular Ada
compiler with regard to representation clauses and implementation-dependent features. This scheme
may be applied to other compilers, and other qualitative compiler assessments are expected to ap-
pear as part of this series.

This report has been prepared by the Ada Embedded Systems Testbed Project at the Software
Engineering Institute (SEI). The SEI is a federally funded research and development center (FFRDC)
sponsored by the DoD and established and operated by Carnegie Mellon University. This report was
prepared by the authors while on sabbatical leave at the SEI.

CMU/SEI-87-TR-14

2. The Problem Domain
A frequent characteristic of real-time, embedded systems is that they make use of packed data
structures. That is, the basic unit of machine storage (such as a 16-bit word) may be used to store
several fields. For example, a storage unit may contain several values such as a 4-bit integer, a 2-bit
integer and a 10-bit integer. Additionally, one frequently encounters "binary scaled" values. These
are fixed-point objects represented in the form (m, n), meaning there are m binary digits to the left of
the (binary) decimal place, and n binary digits to the right. Thus, scalings such as (7, 8), (0,15), and
(17,10) may be found. The application program must therefore provide code which accesses, manip-
ulates, and performs arithmetic operations on such data structures.

The principal reasons for the use of packed data structures are two-fold, namely:

1. To minimize storage allocation.
2. To conform to constraints imposed by external systems.

The first case is obvious. That is, storage availability is at a premium in many systems and minimiz-
ing such storage allocation is often a basic concern. It is understood that the particular application is
willing to sacrifice additional time to perform the storage operations on the packed data structures.

A second reason for the use of packed data structures is to conform to the requirements imposed by
some external system. A relevant example is some hardware device that memory maps data in a
packed format which the application program must then operate on. In these cases, there is no
freedom of choice regarding data representation on behalf of the application program. That is, there
is an explicit requirement that the application must process and perform operations on such packed
data structures.

Many mission-critical systems are distributed in nature. For example, a command and control system
may be composed of several subsystems. A basic feature of the overall system is that the subsys-
tems communicate via digital intercomputer messages. Often the content of the messages trans-
mitted and received by a particular subsystem employ packed data structures. Thus, a particular
application subsystem must be able to process packed data structures; this represents the case
where the application is constrained to conform to requirements imposed by existing systems. The
use of packed data structures within the context of intercomputer messages motivates the examples
discussed later in this report.

The ability to access and perform operations on packed data structures is directly related to Ada and
may be illustrated as follows. Consider a distributed system which is composed of subsystems,
possibly resident in different processors. Assume that one of the subsystems will be upgraded and
that the upgrade will be done using Ada. Clearly, the new upgrade must conform to interface specifi-
cations with other existing subsystems. Hence, if interprocessor communication is achieved by
packed data structures, the upgrade must also conform to the requirements imposed by the existing
subsystems. In other words, the ability of the Ada compiler chosen for the upgrade to access and
operate on packed data structures is an issue which must be addressed.

CMU/SEI-TR-14

CMU/SEI-87-TR-14

3. Discussion of Representation Clauses and
Implementation-Dependent Features in Ada

3.1. Introduction
One of the underlying design principles in the development of the Ada language was the attempt to
incorporate accepted software engineering practice in elements of the language. One of these prin-
ciples, as discussed in reference [5], is referred to as the "separation principle." That is, one should
attempt to separate the logical data representation from the physical representation. The logical
representation refers to the conceptual, structural representation of data and is machine independent.
In contrast, the physical representation couples the logical representation to the underlying architec-
ture.

It was recognized, however, that there was a need to be able to allow the designer to interact with the
underlying hardware implementation of data types. For this reason Ada provides representation
clauses which provide the mechanism through which the logical properties of data types may be
mapped to the underlying machine architecture. It is through the use of the representation clauses
that packed data structures may be discussed in Ada. The discussion of representation clauses and
implementation-dependent features constitutes the so-called "Chapter 13" issues of Ada, as dis-
cussed in the Reference Manual for the Ada Programming Language, reference [6],

An important point must be made at the outset of any discussion of representation clauses and
implementation-dependent features in Ada. The reader must be aware that the use of these lan-
guage features will considerably affect the portability of the software. Specifically, the use of repre-
sentation clauses manifests a direct coupling to the underlying architecture. As such, the code will be
machine-dependent, and portability of the code may no longer be possible. The implementation-
dependent features are, by definition, implementation specific. The toss of portability must be kept in
mind; in many cases of embedded systems, this may not be a significant issue. Note that the separa-
tion of logical and physical data representations can help to minimize the cost of portability. This
separation should be kept in mind during the software design stage.

It is the purpose of this chapter to provide a brief overview of the representation clauses in Ada.
Additionally, we note three pragmas that have particular relevance to the treatment of packed data
structures and representation attributes that provide a mechanism for obtaining implementation-
dependent quantities. The following discussion is largely tutorial in nature and is followed by specific
examples in the next chapter. Some insight into a discussion of representation clauses may be found
in reference [5]. Note that the application of representation clauses to tasks and interrupt handling
are beyond the scope of this report and will not be addressed here.

CMU/SEI-TR-14

3.2. Pragmas Pack, Optimize, and Shared

Ada provides three compiler-directive statements, or pragmas, which are applicable to the treatment
of packed data structures. The first of these, pragma PACK, has the syntax:

pragma PACK (type_simple_name);

where type_simple_name refers to the name of a type. The PACK pragma indicates that gaps
between consecutive components of an array or record should be minimized. Note the use of the

term "minimized." Thus, the use of this pragma does not assure that there will be no gaps between
consecutive storage components. Rather, it directs the compiler to minimize the gaps between con-
secutive data components. Hence, the use of this pragma is applicable to minimization of storage
allocated for records and arrays. It does not, however, allow one to directly map a structure onto the
underlying hardware.

The second Ada pragma relevant to the discussion at hand is pragma OPTIMIZE, which has the
syntax:

pragma OPTIMIZE (argument);

where argument can be either TIME or SPACE. The purpose of this pragma is to request optimiza-
tion according to the argument specified. Note that pragma OPTIMIZE is local in nature in that
effects of this pragma apply only to the block or body enclosing the declarative part in which it is
used. That is, one Ada unit may contain a request that the compiler optimize storage, while another
Ada unit may request that the compiler optimize execution time. The local nature of this pragma
means that it may be used selectively at the discretion of the designer.

The third Ada pragma of concern here is pragma SHARED, which has the following syntax:

pragma SHARED (variable_simple_name);

indicating two (or more) tasks will be accessing (reading or updating) the specified variable. In a
sense, use of this pragma provides information to the compiler which may be used in optimizations
performed for the specified variable. Section 5.5 presents an example requiring the use of this
pragma.

The Reference Manual for the Ada Programming Language, reference [6], defines pragmas other
than those listed above. An implementation may provide additional pragmas to support a particular

target machine.

CMU/SEI-87-TR-14

3.3. Type Representation Clauses

The Ada language defines two basic representation clauses: type representation clauses and ad-
dress clauses. Address clauses apply to one of the following: an object, subprogram, package, task,
or entry. Section 3.4 gives a discussion of address clauses.

Type representation clauses apply to either a type or a subtype declared by a type declaration (which
is termed a "first-named subtype"). These clauses apply to all objects of the type or first named
subtype. Type representation clauses may exist in one of the following forms:

1. Length clause
2. Enumeration representation clause
3. Record representation clause

Each of these forms is discussed in the following sections.

3.3.1. Length Clauses
A length clause specifies the amount of storage to be associated with a particular type. The general
form of the clause is:

for attribute use simple_expression;

The storage allocated for a particular type may be affected by the use of attribute designators SIZE,
STORAGE_SIZE, and SMALL.

The SIZE attribute designator indicates the upper bound for the number of bits to be allocated to the
specified type. Note that the size specification gives an upper bound for the number of bits to be
allocated, not the exact number of bits to be allocated. The value of the simple_expression must
allow enough storage for the values of objects of the type specified.

The STORAGE_SIZE attribute designator applies to access types and indicates the amount of
storage units to be reserved for the pool of memory from which dynamically created objects of the
specified type are allocated.

The SMALL attribute designator is used for fixed-point types. Recall that the basic storage model for
fixed-point types is sign .mantissa, small, where sign is either +1 or -1, mantissa is a positive integer
not equal to zero, and small is the largest power of two that is not greater than the delta given in the
fixed-point type definition. Thus, the SMALL attribute designator indicates that the specified value of
small should be used for the representation of fixed point values of the particular type.

Let us consider some simple examples in the use of the length clause. First, suppose we have an
integer type which ranges over the values -100..100. It is possible that a number within this range
may be implemented in only eight bits, as indicated below:

Bits : constant > 1;
type Smalljnteger Is range -100 .. 100;
for SmallJnteger'SIZE use 8 * Bits;

CMU/SEI-TR-14

As an example of the use of the STORAGE_SIZE attribute designator, assume that we wish to
allocate a page of memory for an access type Keyboard_Buffer. If the memory page is 2000 storage
units, then the following indicates how to allocate the desired memory:

Page : constant := 2000;
type Keyboard_Buffer Is access Buffer;
for Keyboard_Buffer'STORAGE_SIZE i/se1 * Page;

Next, we consider an example of the use of the SMALL attribute designator. Suppose there is a
fixed-point type, Heading, where objects of type Heading are used to store the heading of the ship.
Assume that the values of Heading are in the range 0.0 .. 1.0, and that the delta for this fixed-point
type is 0.01. We may obtain a "finer" representation for objects of this type by redefining the value of
small as illustrated below:

type Heading Is delta 0.01 range 0.0 .. 1.0;
for Heading'SMALL use (2.0 ** (-8));

In the type definition for Heading, the default value of small for the fixed point representation will
characteristically be 2 ** (-7), since this value is less than the specified delta and satisfies the in-
dicated range constraint. Redefining Heading'SMALL to be 2 ** (-8) ensures the accuracy of objects
of type Heading. The additional bit used to specify small can be used as a "guard digit" to prevent
round off, truncation, or overflow errors.

Finally, more than one length clause can be provided for a type. For example, a size specification
can also be given for type Heading above:

for Heading'SIZE use 10 * Bits;

specifying that at most 10 bits be allocated for objects of type Heading.

3.3.2. Enumeration Representation Clauses
Ada provides enumerated data types, and it is possible to specify the internal codes to be used for
the literals of the enumerated types by using an enumeration representation clause. The general
form of this clause is:

for type_simple_name use aggregate;

The mapping from an enumeration literal to the internal representation of the literal is accomplished
by using an array aggregate, which, in this case, is a one-dimensional array of integers. For ex-
ample, suppose a system recorded the values of gyro status, which are enumerated as up, down,
and unknown. If one wanted to map these literals to an internal representation of 0, 1, and 3,
respectively, then the following would suffice:

type Gyro_Status /s(UP, DOWN, UNKNOWN);
forGyro_Status use

(UP => 0, DOWN => 1, UNKNOWN => 3);

Each enumeration value must be an integer type which is static, that is, known at compilation time.
The values which are associated with a particular enumerated literal must appear in increasing order
in the enumeration representation (the "for" clause, above). Additionally, the enumerated values

CMU/SEI-87-TR-14

must be distinct. In the example above, note that the enumerated values (namely, 0, 1, and 3) are
not contiguous (since the value 2 is not present). The implementation of enumeration representation
clauses when the integer codes are not contiguous may be inefficient and thus may effect the effi-
ciency of the operations performed on the enumeration type.

At most, one enumeration representation clause is allowed for a given enumeration type, though a
length clause can also be specified for Gyro_Status:

forGyro_Status'SIZE use 8 * Bits;

3.3.3. Record Representation Clauses
One of the composite data types supported by Ada is a record data type where types of the compo-
nents of the record may be different. A record representation clause may be used to specify the
order, position, and size of record components. The general syntax for the record representation
clause is:

for type_simple_name use
record alignment_clause

component_clause;
end record:

where the syntax of an alignment clause is:

at mod static_simple_expression

and the syntax of a component clause is:

component_name at static_simple_expression range static_range

The use of an alignment clause is optional and, if used, forces each record of the given type to be
allocated at a starting address which is an integer multiple of the specified expression. The use of the
component clause specifies two characteristics of the component:

1. the storage location of the record component, relative to the start of the record, which is
expressed in system storage units.

2. the bit positions of the record component, relative to the storage unit, which also im-
plicitly defines the number of bits to allocate for the component.

For example, navigation data include ownship position data such as latitude, which is assumed to be
20 bits in length, and longitude, which is assumed to be 21 bits in length. The record type below and
its associated representation clause define this data:

type Ownship_Position_Data is
record

Latitude : Latitude_Type;
Longitude : Longitude_Type;

end record,

for Ownship_Position_Data use
record at mod 4

Latitude use at 0 range 4 .. 23;
Longitude use at 3 range 3 .. 23;

end record,

CMU/SEI-TR-14

The alignment clause specifies that objects of the record type be allocated on double-word bound-
aries. The component clauses specify what storage unit and bits each record component occupies.
As with enumeration representation clauses, at most one record representation clause is allowed for
a given record type, though a length clause may also be provided. Thus, the following length clause
can be specified for Ownship_Positk>n_Data:

for Ownship_Positk>n_Data,SIZE use 64 * Bits;

The use of records provides a convenient data representation for messages which are transferred
between systems in a distributed computing environment. Thus, they are the principal structure
applicable to the definition of intercomputer messages. In the examples to be presented in Chapter
5, records, as well as record representation clauses, are frequently used.

3.4. Address Clauses

The second general class of representation clauses defined by Ada is the address clause. As the
name implies, an address clause allows for specific address references. The syntax of this clause is:

for simple_name use at simple_expression;

where simple_expression is of type ADDRESS defined in package SYSTEM. Note that values of this
type need not be integers.

Address clauses may be used in a variety of situations. For instance, they may be used to specify
addresses where some external device will map data. An example is:

for Sensor_Mapped_Data use at 16#F200#;

which specifies that sensor data will be mapped at address F200 hexadecimal. Address clauses may
also be used to specify an address of machine code which may be referenced in some call statement.
As another example, an address clause may be used to specify an address where control will be
transferred upon recognition of an interrupt.

3.5. Representation Attributes

We have emphasized that the use of representation clauses is inherently coupled to the implemen-
tation, or compiler. It is possible to obtain the values of certain implementation-dependent character-
istics. These may be obtained by interrogating representation attributes. These attributes contain
values of implementation-dependent quantities.

Representation attributes have several uses. First, they may be useful during debugging of some
section of code. Thus, they provide a mechanism for validating the output of a particular compiler.
For example, if one specifies a length clause for a type and declares an object of that type, represen-
tation attributes can be used to verify that the size of the object is not greater than that specified in the
length clause. Second, they may be used to provide information to an application program concern-
ing basic quantities which may then be referenced by other code sections. An example of this is
given in Chapter 6.

10 CMU/SEI-87-TR-14

The problem domain for the consideration of this report is in the area of packed data structures. In
particular, we have considered the use of packed data structures which are forced to conform to
some particular format, such as that imposed by an external computer system. It is possible, how-
ever, to use packed data structures where the choice of the packing is done by the compiler with the
intent of minimizing storage allocation. In this latter case, representation attributes may have consid-
erable application as an alternative design technique. In fact, the resulting design may be more
portable, where the portability is assured through the use of the representation attributes. Note,
however, that there may be an overhead associated with the use of these attributes.

Two of the representation attributes which are defined by the language, and which have particular
application to the problem area at hand, are:

1. X'ADDRESS provides the address of the first storage unit allocated to an object, pro-
gram unit, label, or entry denoted by X.

2. X'SIZE, when applied to a type or subtype X, yields the minimum number of bits neces-
sary to allocate any possible object of the type or subtype; and when applied to an
object X, provides the number of bits allocated to store X.

It is also possible to obtain certain information about the location and size of components of a record.
In particular, the following representation attributes may be used for record-dependent quantities
where R denotes a record and C denotes a component of R:

1. R.C'POSITION provides the offset of the first storage unit occupied by the component
C. The offset is measured from the first storage unit occupied by the record. The value
of the offset is of type universal_integer.

2. R.C*FIRST_BIT provides the offset of the first bit occupied by the component C. The
offset is measured from the first storage unit occupied by C. The offset is measured in
bits and is of type universal_integer.

3. R.CLASTJ3IT provides the offset of the last bit occupied by the component C. The
offset is measured from the first storage unit occupied by C. The offset is measured in
bits and is of type universal_integer.

An example of the use of representation attributes, particularly those for obtaining record-dependent
information, is presented in Chapter 6.

3.6. Compiler Support

An overview of representation clauses and implementation-dependent features in Ada has been
presented. The previous discussions were based on the Ada language, as defined in reference [6],
as opposed to an implementation of Ada. Thus, the discussions were given independent of any
particular implementation. It is important to note that the Ada language allows an implementation
many options for its support of representation clauses and implementation-dependent features, and
the following discussion is made in view of this.

The Reference Manual for the Ada Programming Language, reference [6], states that an implemen-
tation may limit its acceptance of representation clauses. In other words, support of these clauses is
optional. On the other hand, support of the predefined generic library subprogram
UNCHECKED_CONVERSION (discussed in Section 4.4) is required. The following features dis-
cussed in this report are optional for an implementation:

CMU/SEI-TR-14 TF

• length clause

• enumeration representation clause

• record representation clause

• address clause

Those features that are required for an implementation are:

• pragmas PACK, OPTIMIZE, and SHARED

• representation attributes

• UNCHECKED_CONVERSION

• pragma INTERFACE (discussed in Section 6.2)

Support of any feature listed above, required or not, involves some implementation-specific inter-
pretation or option. For example, pragma PACK is a language-defined pragma and thus must be
supported, which only means a compiler must not reject a program containing this pragma. An
implementation has the option as to whether or not it will actually perform packing. And, if record
representation clauses are supported, an implementation can choose what values are legal align-
ments in an alignment clause. It is implementation options such as these that motivate and warrant
this series of reports. In particular, it is the purpose of reference [2] to aid the application developer in
determining what support a particular implementation provides.

12 CMU/SEI-87-TR-14

4. A Basic Design Model

4.1. Introduction
In the previous chapter we indicated the general use of representation clauses in Ada, noting that
they are frequently used in the treatment of packed data structures. Any application must consider
the use of representation clauses in two contexts. First, there is a low-level context. Here, the
principal issue is the manner in which the relevant data structures may be defined using represen-
tation clauses. Within this context is the issue of data representation for a particular architecture.

A second context is one which is at a higher level. Here, we are concerned with the relationship
between an abstract definition of data and a concrete representation of that data. To successfully
deal with this level of abstraction, we need some basic design model, or paradigm, to frame a discus-
sion.

4.2. Data Abstraction
We have mentioned that the development of the Ada language was spurred, in part, by emerging
software engineering principles. One aspect was the inclusion of certain features in the language to
support the new design methods. One of these methods is of special importance to the consideration
of representation clauses. This is the approach of data abstraction, which is related to the separation
principle. In particular, this perspective is based on the following:

The abstract properties of data should be distinct from data representation. This is tan-
tamount to a separation of logical properties of data from the physical implementation of the
data.

We accept this basic design model and it is used in the examples discussed later. For example, the
concept of packages is considered in the examples below as a means of encapsulating data. Note
that the data abstraction paradigm has various applications. On the one hand, it implies that the use
of representation clauses should be separated from code sections which require only logical
properties of data. On the other hand, the principle applies to development of large programs. One
basic example here is the notion of a virtual interface. The example of a virtual interface is ap-
plicable, particularly in consideration of a distributed computing environment. Thus, one side of the
interface is concerned with representation of data and details of input/output processing to other
systems. The other side of the virtual interface is concerned with the logical properties of data and
operations on the data.

To satisfy the principle of data abstraction, it is implicit that one must have a mechanism to provide for
multiple representations of data. Stated differently, one must be able to affect a change of represen-
tation. In the following subsection we indicate how this change of representation may be accom-
plished in Ada.

CMU/SEI-TR-14 13

4.3. Affecting Multiple Representations

We now illustrate the concept of multiple representation by a simple example. In Ada, at most one
representation clause is permitted for a given type and aspect of representation. It is recognized that
there may be a need to have another representation in addition to the default representation. Thus, if
an alternate representation is needed, one may declare a second type which is derived from the first
although it may be represented differently.

We may illustrate the preceding by considering the example of a virtual interface. Assume that there
is a set of related data which is of a type Message_Data. The elements of the record will be used in
computational procedures and are represented as integer or floating point, for example. It will be this

logical definition of the type Message_Data which will be used on one side of the virtual interface. On
the other side of the virtual interface, we are concerned with a second type, called Message_Buffer.
We define a new record type exactly the same as Message_Data, except here the components are
specified with representation clauses which correspond to the details of the interface to some external
system. The fact that the type Message_Buffer is derived from the type Message_Data may now be
illustrated by considering the following:

type Message_Data Is
record

- declare record components
end record,

type Message_Buffer is new Message_Data;

for Message_Buffer use
record

-- declare record components in packed format
end record,

Consider now an object M, which is of type Message_Data. To affect a multiple representation of
object M, i.e., change the representation of object M to that specified by type Message_Buffer, the
following could be performed:

M : Message_Data;
N : Message_Buffer;

N := Message_Buffer(M);

The expresston Message_Buffer(M) is an explicit conversion of object M, which is of type
Message_Data, to the type Message_Buffer. That is, the record which is used for computational
purposes is explicitly converted to a packed representation.

We see then that the use of different representations satisfies the data abstraction principle. Further-
more, we may perform conversions from one representation to another. An example illustrating this
is considered in the following chapter.

14 CMU/SEI-87-TR-14

4.4. Unchecked Conversion

A characteristic feature of Ada is that the language is strongly-typed. Basically this means two things.
First, objects of a particular type may assume only those values which are appropriate to the partic-
ular type. Second, the only operations which are permitted on an object are those defined for the
type of the object. We see then that typing provides a way for imposing structure on objects which
the language operates with.

Ada also permits type conversion in two different forms. First, there is explicit conversion. An ex-
ample of this is a statement of the form A := FLOAT(I), which causes the value of the object I to be
converted to the type of A, assumed floating point. Another example of an explicit type conversion
was illustrated in Section 4.3 concerning changes of representation.

In addition to explicit type conversions, Ada also supports a generic function which is called
UNCHECKED_CONVERSION. An instantiation of this generic function allows a bit pattern of some
source type to be interpreted as a value of some target type. An example of the application of
UNCHECKED_CONVERSION is provided in the following:

type Ints is range 0 .. 100;
type Fixed is delta 0.0001 range 0.0 .. 200.0;

function Convertjojnts Is new UNCHECKED_CONVERSION
(Fixed, Ints);

J: Ints;
X : Fixed;

J > Convert_to_lnts(X);

The result of the above is that the bit pattern representing X, declared as a fixed-point type, will be
interpreted as a value of the target type, in this case an integer. It must be stressed that the value of
X will not be equal to the value of J after the conversion has been performed. This statement is true
notwithstanding the fact that the objects X and J are of different types. Recall that an explicit conver-
sion is a conversion of values. It is to be emphasized, however, that the use of
UNCHECKED_CONVERSION represents an interpretation of some particular bit pattern in terms of a
target type. Clearly, the use of this type of conversion must be treated with special care. In spite of
this, we provide an example in the following chapter where UNCHECKED_CONVERSION is
employed and shown to be useful. A full discussion of generics and instantiation of generics may be
found in references [5] and [6].

CMU/SEI-TR-14 15

16 CMU/SEI-87-TR-14

5. Examples

5.1. Introduction

We now illustrate the application of representation clauses and implementation-dependent features
by means of several examples. The examples presented should be understood in the sense of a
case study. That is, there is no attempt to define an exhaustive set of experiments which encompass
the full range of application of representation clauses. Some discussion, within the context of a
detailed experimental setting, is provided in reference [3], however.

To facilitate illustration of representation clauses, intercomputer digital communications used in a
shipboard Inertial Navigation System (INS) will be the principal domain from which examples are
chosen. An INS provides some external computer (EC) with time-critical measurements of the ship
position and motion. Intercomputer digital messages are used for communication between the INS
and the EC.

The first example given is introductory and illustrates length, enumeration representation, and record
representation clauses. Next, an example with data of type integer is presented. We also present
examples involving multiple data types. An example is given where data is mapped into a particular
hardware address and processed to obtain specific values. The final example illustrates the use of
UNCHECKED_CONVERSION to perform a message checksum calculation.

Several notes are relevant to the following examples. These are: (1) the System.Storage_Unlt is
assumed to be 8 bits but the message layouts show a 16-bit word. Because of this there will not be a
direct one-to-one correspondence between the given message layout and implementation. (2) It is
assumed that a component can overlap a storage boundary (e.g., a word boundary). (3) It is as-
sumed that the relative ordering of bits within a particular System.Storage_Unit is from left to right
and that storage units are numbered from left to right with respect to each other.

5.2. An Introductory Example

Each message used in the INS has a common message header. Thus, it would be appropriate to
specify that header only once in a package and make that package available to all message imple-
mentations. Figure 1 shows the data layout of the message header. The message header is con-
tained in two 16-bit words and includes the message type (MT) and number of data words (NW) in
the message.1

Figure 2 shows an Ada package that implements the message header and associated component
types. Type MessageJType is an enumeration type and associated with that is an enumeration
clause that maps the appropriate numeric code to each kind of message. Type Bii Value Type is
an integer type with range 0 to 1, and thus a length clause is used to specify that objects of this type
be represented in 1 bit.

1For purposes of simplicity, all figures are collected together and may be found in Appendix I.

CMU/SEI-TR-14 17

Finally, using the three previously defined types, a record type and associated record representation
clause are used to implement the message header illustrated in Figure 1. Type
Message_Header_Type contains three components: Type_of_Message, Blt_Constant, and
Number_of_Words. For each component in the record type, a component clause is given in the
record clause that specifies its location and size. For example, Number_of_Words is located at
word 2 and occupies bits 1 through 14.

5.3. An Example of Integer Types

A basic procedure in intercomputer communications is to perform a test of the interface between the
machines. This test is performed as part of the enabling of communications and also at periodic
intervals thereafter. The test of the interface is accomplished by an exchange of Test Messages.
Figure 3 shows the format of the Test Message transmitted by the INS. The Test Message is eight
16-bit words long and consists of a message header, source information, and two test word fields.
With the exception of the message header, all the data in this message are of type integer.

An Ada package that implements this test message is given in Figure 4. Test_Message_Type
consists of four components: Test_Message_Header, which is a record itself of type
Message_Header_Type; Source of the defined type Source_Type, and Test_Word_3 and
Test_Word_2 whose type is the predefined type Integer. The associated record representation
clause lists a component clause for each of the components. It should be pointed out that a compo-
nent clause is given for Test_Message_Header to ensure that it is positioned first in the record. Note
that the components of Test_Message_Header need not be specified since this was done previously
in package Message_Header_Format.

5.4. An Example of Fixed-Point and Floating-Point Types

A shipboard INS provides an EC with navigation data that include ownship latitude, longitude, speed,
heading, pitch and roll, among other things. Figure 5 shows a navigation data periodic message
layout through which such information is passed to the EC. The navigation message is 30 16-bit
words long and contains 17 fields of specific navigation data. All navigation data are real types. The
data scaling applicable to the fields in Figure 5 is indicated in the form (m.n). As noted earlier, an
(m,n) scaling means that there are m binary digits to the left of the decimal point and n binary digits to
the right of the decimal point.

Figure 6 shows an Ada package that contains a record type, record representation clause, and asso-
ciated component type definitions. Package Navlgatlon_Message_Format contains a set of con-
stants that are the deltas of the defined fixed-point types. For example, type
Ownshlp_AttitudeJnformatlon is a fixed-point type whose delta is the constant OAI_Del. Of the
defined types, type Ownshlp__VelocltyJntegrals is the only floating-point type.

The record defined shows components of the appropriately defined type that represent the navigation
data resident in the message shown in Figure 5. The record representation clause appropriately
positions each component. For example, Longitude is of the fixed-point type

18 CMU/SEI-87-TR-14

Ownship Longitude_Data, is located at byte 9, and occupies bits 3 .. 23. The delta for this type is
given by the constant OLOD_Del and has the value 2**(-6), which corresponds to the number of
binary digits in the scaling for this data. Similarly, lntegral_Veloclty_North is of the floating-point
type OwnshIp_Veloclty_lntegrals, located at byte 44, and occupies bits 0 .. 31.

5.5. An Example of Analog Conversion

As a final example in the use of representation clauses, consider a 24-bit machine which receives
analog data at a periodic rate. We also assume that the data are DMA mapped to particular ad-
dresses. Hence, this example requires the use of address representation clauses, noted in Section
3.4. We assume that the analog data consist of a ship heading, roll, and speed data, and that the
data are mapped to the octal addresses 101 to 103, respectively. Note that each of these addresses
is assumed to be 24 bits in length.

Each 24-bit analog data value is assumed to be in the following format:

• Bit 24 (the most significant bit) is assumed zero.

• Bit 23 is used to indicate a scale multiplier; if the bit is set, the multiplier will be used in
converting the data.

• Bit 22 is a second scale multiplier, used similarly as above.

• Bit 21 is reserved for a sign bit.

• Bits 20 through 10 contain the data bits. In the case of the ship heading and roll, this
field is interpreted as the arctangent of the respective angle. In the case of the ship
speed, these bits represent the arctangent of the speed. The data are provided in the
arctangent form by the hardware device and require conversion by the software. The
unit of measurement for heading and roll is degrees, while the speed is measured in
knots.

• Bit 9 is a validity bit. Thus, if the bit is set, the data are valid; otherwise, the data are
invalid. If the data are invalid, no conversion of the data should be performed, and an
exception should be raised.

• Bits 8 and 7 are used as a code for the particular channel which provided the data.

• Bits 6 through 1 are spare and not used.

CMU/SEI-TR-14 19

The above defines the general format of the data which are mapped into particular memory ad-
dresses. For each particular value, that is, heading, roll, or ship speed, it is necessary to convert the
data to obtain specific values. The equations for conversion of the data are defined in the following

manner:
Heading = 180 B23 + 90B22 + K Arctan[2-1 B^ + 2'2 B19 + ... + 2-11B10]

ROIL 90B23 + 45B22 + 0.5 K Arctanp^B^+2"2B19 + ...+ 2"11B10]

Speed = 5 {180 B23 + 90 B^ + K Arctan[2"1 B20 + 2 2 B19 + ... + 2"11B10] }/18

In the above equations, Bj refers to the value of bit i and K is (-1)B2i.

The preceding has defined the data formats and appropriate addresses where the data are mapped.
We now consider the software aspects of the problem. In particular, we consider (i) the use of
representation clauses to allocate storage for the data, and (ii) the software necessary to perform the

data conversions. Note the following for this example only. (1) SYSTEM.STORAGEJJNIT is as-
sumed equal to 24 bits; and (2) bit numbering in the figure starts at 1, and Ada requires bit numbering
to begin at 0; thus there will not be a one-to-one correspondence between the implementation and
the figure.

Figures 7a-f show an Ada implementation for this analog conversion. Figure 7a shows an Ada
package, Analog_Data_Format, that contains type declarations for representing the analog data.
The distinction between objects of types Blt_Type and Bit_Value_Type must be made. Some bits in
the analog data are used as boolean bits, e.g., Valldlty_Blt, and are of type Blt_Type, whereas other
bits are used numerically and are of type Blt_Value_Type.

Figure 7b shows the main procedure for the data conversions. The procedure Convert_Data uses
the type definitions in package Analog_Data_Format. Object declarations for the analog data and
an associated address clause are defined in this procedure. For example, an object
Roll_Analog_Data is declared to be type Analog_Data_Type, and an address clause is given speci-
fying that it is located at octal address 102 in memory. Note also the use of pragma SHARED for the
analog data objects which informs the compiler that some other process will be accessing these
variables.

Convert_Data also contains a general purpose data bit conversion function, Convert_Data_Blts,
which is shown in Figure 7c. Convert_Data_Blts uses an arctangent function ATanD which is as-
sumed to be contained in a predefined library package, Float_Math_Llb. Convert_Data_Blts is
called by each of the conversion functions, e.g., heading, roll, and speed. For example, function
Convert_Headlng, which is shown in Figure 7d, calls Convert_Data_Blts, and, using the returned
result in the appropriate conversion equation, calculates the heading. Similarly, Figures 7e and 7f

contain functions Convert_Roll and Convert_Speed, respectively.

Two points should be made regarding the design of this example. First, note that all the machine-
dependent data representation code can be found in one package, Analog_Data_Format. This will
be helpful in maintenance, for example, since all possible changes to the machine dependent repre-

20 CMU/SEI-87-TR-14

sentation values will be made in only one unit. Also note that the package Analog DataFormat
contains object declarations for heading, roll, and speed analog data where address clauses are
given specifying the location where the data will be mapped by the external system.

A second point should be made about the use of modularity. For the purposes of this example,
separate functions for each of the conversions is plausible, but when designing a mission-critical
system, one must consider the overhead cost of making the function calls. Depending upon the
particular emphasis, it may be more efficient to use either pragma INLINE which replaces a function
call with the actual body of the function, or eliminate the functions altogether and put the code for the
conversions in the body of the main procedure.

5.6. Calculation of Message Checksums

In systems which involve the transmission of data with other systems, there is typically a requirement
that the integrity of the data transmission be assured. A simple technique to implement such a
requirement, which is frequently used, involves a checksum procedure on the contents of the mes-
sage. We now extend the discussion of Section 5.4 to incorporate a simple message checksum. We
implement the checksum using the UNCHECKED_CONVERSION function of Ada, discussed in Sec-
tion 4.4.

In Figure 5, we presented the format of a Navigation Data Message, which contains information about
a ship position and attitude data. The Ada code to implement this example appears in Figure 6. Let
us now extend this example to incorporate a simple checksum procedure in the following manner:
We will perform the algebraic sum of each 16-bit component of the message. The checksum shall be
computed as a 32-bit integer.

In the format of the Navigation Data Message, shown in Figure 5, we note that the message compo-
nents are not allocated in units of 16-bits. At first it may appear that performing the checksum is a
problem; we certainly cannot merely add up the values of the components, for this would be incorrect.
Rather, the problem is to add up each 16-bit word in the message, as opposed to message compo-
nents. We now illustrate a technique to accomplish this using the UNCHECKED_CONVERSION
function.

Figure 8 shows a function, Checksum, that given a message of type Navigatlon_Message_Type,
will return the integer checksum of that message. Prior to calculating the checksum, the message
must be converted to a format that will allow the 16-bit fields to be accessed. An array type,
Array_of_Flelds whose components are of type Field_Type, is defined for this purpose. The bit
pattern of the parameter NavigationMessage is viewed as type Array_of_Flelds using the function
Convert_to_Fields and assigned to the object CheckSum_Message. The checksum is computed
from this new representation. The specific conversion function that views the bit pattern of an object
of type Navlgat!on_Message_Type as the bit pattern of an object of type Array_of_Fields is an
instantiation of the generic function UNCHECKED_CONVERSION which is made visible by the "with"
clause. Note that for purposes of this example this function calculates the checksum of messages of
type Navlgatlon_Message_Type only. A general purpose function to calculate checksums of any
message could also be implemented.

CMU/SEI-TR-14 21

22 CMU/SEI-87-TR-14

6. The Use of Assembler Language

6.1. Introduction

A characteristic alternative to implementing a particular operation in Ada, where an Ada implemen-
tation does not support the necessary features to implement the operation, is to use assembler lan-
guage. Traditionally, use of assembler language was warranted because assembler code is typically
"better" than the code which would be generated by the compiler. Assembler code has found fre-
quent application to time-critical processing as well as bit-manipulation operations. In view of the
widespread use of assembler, we believe it is relevant to discuss the mechanism through which an
Ada program interfaces to a routine written in another language and to consider an example which
illustrates interfacing an Ada program to an assembler language subroutine.

6.2. Discussion: Pragma Interface
Ada provides for the ability to interface to another language through the use of pragma INTERFACE.
The general form of this predefined pragma is as follows:

pragma INTERFACE (language_name, subprogram_name);

For each subprogram name, there must exist a pragma INTERFACE. This pragma specifies the
language as well as the name of the subprogram. Note that the specification of the language im-
plicitly specifies the calling conventions. It is not required that an implementation support this
pragma. Furthermore, an implementation may place restrictions on the permitted forms and places of
parameters, as well as calls to the subprogram.

6.3. An Example
We now consider an example illustrating the use of assembler language. For this example we as-
sume that there is a need to allocate and access some data structure which contains information
about the status of an inertial navigation system gyro. Thus, we assume that these data contain
information about the gyro alignment mode, the current temperature, and the current values of x, y,
and z torques being applied. Additionally, we assume there are five status indicators which provide
the status of an A-D converter and multiplexer, a random access memory (RAM) built-in test (BIT)
status, status of a velocity buffer, and finally, the status of the gyro power supply. We assume that
the type of data recorded is of the type and ranges indicated below:

1. Gyro alignment mode, integer, [1,12]
2. Left Bit Precision (M), integer, [0,15]
3. Right Bit Precision (N), integer, [0,15]
4. Gyro temperature, integer, [0,100]
5. x-gyro torque, fixed-point, [0.0, 360.0]
6. y-gyro torque, fixed-point, [0.0, 360.0]

CMU/SEI-TR-14 23

7. z-gyro torque, fixed-point, [0.0, 360.0]

8. A-D Converter status, integer, [0,1]

9. A-D Multiplexer status, integer, [0,1]

10. RAM BIT status, integer, [0,1]

11. Gyro power status, integer, [0,1]

12. Velocity buffer status, integer, [0,1]

The gyro torque components have been specified as fixed-point types, which is the desired target
type. In the actual data, however, they are reported as an integer-type bit pattern. The ability to
convert this pattern is based on the values of the precision, denoted M and N. That is, the value of M
(N) represents the number of binary places to the left (right) of the binary point. We assume that the
values of M and N are not constant. In other words, the precision of the gyro torque components will
vary according to the values of M and N.

In the example, we assume that the actual locations for the above data items are not fixed. That is,
the locations are not constrained to conform to some external specification, which is in contrast to the
preceding examples. However, we require that the total storage for the structure be minimized, and
we affect this by using the pragma PACK. In other words, the storage allocation is determined by the
compiler.

For purposes of the example, we assume that the fixed-point quantities listed above are not neces-
sarily reported in terms of 32-bit quantities. In particular, we assume that the fixed-point quantities
listed above are reported with either 16-, 24-, or 32-bit precision. However, we assume that the target

machine requires the fixed-point quantities to be stored in 32-bit long addresses. Hence, the problem
is to be able to convert an arbitrary fixed-point quantity, specified by the precision based on M and N,
to a fixed-point quantity which will be stored in a 32-bit address. To implement the above considera-
tions, we assume the existence of an assembler language routine that is passed the following
parameters:

1. The address of the component in the record.
2. The bit offset of the component, relative to the address.

3. The length of the component (in bits).

4. The values of M and N, which determine the precision of the data.

Using the above parameters, the assembler routine will convert the data to a fixed-point type, and this
value is returned with a length of 32 bits and 15 bits of precision.

Note that since the allocation of the structure is performed by the compiler, we must have a way of
determining the values of the parameters which are required by the assembler routine. We obtain
these values by using representation attributes, discussed in Section 3.5.

The code for solving this problem is shown in Figures 9a-c. In Figure 9a, a package, Gyro_Status, is
shown which defines a record containing the relevant data. Note that pragma PACK is used, and no
record representation clause is specified; thus the storage representation of the record is decided by
the compiler.

24 CMU/SEI-87-TR-14

Shown in Figure 9b is a package, Asem_Convert, that contains the function specification for the
assembler routine, Asem_Convert_Flxed, and pragma INTERFACE which informs the compiler that
the function specified is an assembler routine. It should be pointed out that type Address is defined
in package System, and package System is made visible to package Asem_Convert by the "with"
clause.

Shown in Figure 9c is a procedure, Encode_Data, that is passed a record containing gyro status
data, and upon completion, passes three parameters containing fixed-point values of the torque data.
Encode_Data invokes the assembler routine, Asem_Convert_Fixed, to perform conversions of the
torque values. Note the use of representation attributes to query the machine to obtain the
parameters needed by the assembler routine.

A final point is worth noting about this example. That is, the storage allocation is performed by the
compiler, and the use of pragma PACK assures us that the storage be minimized. The actual ad-
dress of a particular data item is obtained by querying the representation attributes. This implies that
there is, indeed, a certain portability in the design technique employed. Thus, the same code could
be executed using two different compilers and would provide the same results, even though the
storage allocations might be different. This assumes, of course, that the two compilers support
pragma PACK. Note, again, the possible cost associated with using representation attributes.

CMU/SEI-TR-14 25

26 CMU/SEI-87-TR-14

7. Guidelines for Design

7.1. Introduction

In the following we present some guidelines for the use of representation clauses and
implementation-dependent features. These guidelines are intended for a designer who is considering
using representation clauses and implementation-dependent features in an application program. To
some extent, the choice of a design will be a function of the support provided by the compiler as well
as the run-time environment. Guidelines for an assessment of the support provided by a compiler for
representation clauses and implementation-dependent features are given in references [2] and [3]. It
should be noted that we have made no attempt to be all inclusive in our discussion of guidelines.
Thus, there may be points of interest to some application developer which are not addressed here.

7.2. System Requirements
When designing any system, it is important to know the system requirements. This is particularly
important for contemplated use of Ada with machine-dependent features. Based upon those require-
ments, separation of logical and physical representations should be attempted at the earliest possible
phase of the design.

7.3. Implementation Plan

The results of an analysis of system requirements will provide a list of the machine-dependent func-
tional characteristics necessary for a particular application. On the other hand, the results of an
assessment of compiler support for representation clauses and implementation-dependent features
will provide a list of the compiler's characteristics in support of these features. Such an assessment
should be conducted, if it is not available otherwise. An implementation plan for mapping the system
requirements onto the target processor using the chosen compiler should be performed early in the
design development. An assessment of the system requirements, as well as the compiler support
available, may indicate the need for alternative design mechanisms, such as the use of assembler
language.

As an example of the above, a system being designed in Ada may be required to interface with other
subsystems. An assessment of the interface requirements may indicate that external systems trans-
mit and receive objects of fixed-point types which are of varying size. Several examples of this were
illustrated previously. An assessment of the compiler chosen for the application, as recommended in
reference [2] for example, may show that the compiler only provides for fixed-point types of a con-
stant size, such as 32 bits. Hence, some implementation plan is required to assess the manner in
which the fixed-point types will be operated on in the application. A common choice is the use of
assembler language routines to perform the conversion from arbitrarily sized fixed-point types to the
size required by the compiler. Another choice may be the use of UNCHECKED_CONVERSION
which would "convert" the bit pattern of the fixed-point value to a type that could vary in size, i.e., view
a fixed-point type as an integer and then vary the size of the integer. Keep in mind that the restric-

CMU/SEI-TR-14 27

tions on the use and results of an UNCHECKED_CONVERSION are very implementation dependent
and one must be aware of the behavior of the compiler employed.

The development of an implementation plan may serve several purposes. First, the development of
the plan will affect the mapping from system requirements onto a specific architecture/compiler. Sec-
ond, it will indicate areas where alternative design strategies are warranted. Third, it can indicate the
possible need for assembler routines.

7.4. Knowledge of the Compiler To Be Used

The Ada language gives the compiler implementor many implementation choices, particularly in the
area of representation clauses. As a result, it is very important for an application programmer to
know what implementation choices have been made for the particular compiler employed. It is also
important for an application programmer to know what kind of information the compiler can provide.
For example, a load map which gives storage locations and sizes of program variables is very useful.
The questions enumerated in reference [2] can aid one in gaining knowledge about a particular
compiler, and serious consideration should be given to those questions, prior to design. The choice
of a particular compiler and the associated characteristics of that compiler may require considering
alternatives for supporting machine-dependent functionality.

7.5. Interfacing Code Developed on Different Compilers

When developing large systems, it is not unusual for the development to be distributed among sev-
eral different organizations, each of which uses its own particular resources for the development.
Problems will undoubtedly occur when the system is integrated and code developed on different
compilers/machines must interface with each other. Knowing the compilers and their associated
characteristics that were used for each subsystem development will help alleviate problems. Again,
reference [2] will help in this task.

7.6. Grouping Implementation Dependencies Together

If a system requires the use of implementation-dependent features where specific references to ma-
chine values are made, we recommend that all implementation dependencies be grouped together.
This will make the code more understandable, easier to maintain, and may simplify the process of
portability. This grouping will also aid in keeping logical and physical representations separated. This
recommendation was used in our solution to the analog conversion example, Section 5.5, and is
illustrated in Figures 7a-f.

28 CMU/SEI-87-TR-14

7.7. Using Numeric Values in Length and Record Representation
Clauses

When using representation clauses, the values specified in the clauses are dependent upon the
underlying machine, and how the values are specified may help to relax this dependency. For length
clauses, a simple expression of some numeric type may be used when specifying the amount of
storage. For record representation clauses, a static simple expression of some integer type may be
used specifying the alignment, the storage unit offset, and the bounds on the range of bits. As an
example of this, consider a record component, Speed, which is specified with the following compo-
nent clause:

Speed at Which_Storage_Unit range First_Bit.. Last_Bit;

In the examples for this report, we chose to use specific numeric values for these expressions rather
than objects or constants. The use of objects may make changes to the length and record clauses
easier but will, in our opinion, affect the readability/understandability of the code. Also, dependency
on the underlying machine will be hidden by the objects, but there is an overhead cost associated
with such an approach. This matter is also an issue of style, and tradeoffs must be considered for
either approach.

7.8. Pragma Storage_Unit

Any use of implementation-specific values implies a compromise of portability. A suggestion was
discussed above on how to ease the loss of portability. As another suggestion, consider the
predefined pragma, STORAGEJJNIT, which allows one to change the value of
SYSTEM.STORAGEJJNIT. This pragma may be used to specify the basic storage unit for a partic-
ular target machine. Referring to our example in Section 5.4, Figures 5 and 6, we could have used
this pragma to specify SYSTEM.STORAGEJJNIT to be 16 bits instead of the assumed 8 bits. As a
result, the code would correspond directly to the message layout, and, if ported to another system,
the specific values used in the record clause would not have to be changed. Use of this pragma
could eliminate changes to machine-dependent values. Keep in mind that this discussion is only
relevant for compilers that support this pragma.

7.9. Referencing Storage
In many applications and particularly those applications that use intercomputer messages, there are
specific constraints on the actual placement of data. When representing specific data placements
such as the message formats illustrated in Figures 1, 3, and 5, it is very important to know the
ordering schema for storage units and how bits are numbered within storage units. A correspon-
dence between the requirements and machine Schemas should be documented to ensure correct-
ness of the representation implemented.

For example, the format of the messages referenced above uses a left-to-right ordering of storage
units schema, and numbers the bits within a storage unit from left-to-right. If the underlying machine
used for implementing these messages numbers bits from right-to-left, then the representations, as
displayed in Figure 2, for example, will require modification.

CMU/SEI-TR-14 29

7.10. Run-Time Issues

The scope of this document, and related documents in this series, focuses on the compiler support
for representation clauses and implementation-dependent features in Ada. It must be noted, how-
ever, that consideration of run-time support may also be an issue. In other words, a compiler may
implement some feature of representation clauses or other machine-dependent characteristics by
calls to a run-time library. Hence, the amount of support provided by the run-time environment is an
issue which should also be considered. Here, one is especially concerned with tradeoff issues, such
as execution time and storage requirements, which are associated with the use of run-time support.

7.11. Use of Different Compilers in Development

A development effort may involve the use of more than one Ada compiler. For example, selected
portions of the application may be prototyped. Additionally, part of the application may be developed
with one compiler and then transferred to the target machine.

The use of two (or more) compilers introduces an additional "layer" in the development effort. That is,
one must consider the support provided for representation clauses and machine-dependent features
for the different compilers. A suggested design recommendation would be to implement the machine-
dependent characteristics for the target processor to the extent possible, attempting to minimize the
inherent portability issues.

7.12. Knowledge of Support Facilities
The use of representation clauses and implementation-dependent features may present unusual
problems throughout design and coding. Support facilities, namely debugger and system documen-
tation, should provide relevant functions and information in this area. For example, accessing ad-
dresses of variables, examining contents of those addresses, and displaying machine code are desir-
able functions for a debugger to provide in support of representation clauses and implementation-
dependent features.

Since compiler implementors have many options as to the support of these features, it is very impor-
tant to have complete and correct documentation on these features. And, it is conceivable, since
there are many degrees of support for these features, that upgraded versions of an implementation
will enhance the support originally provided for these features. The manner in which system docu-
mentation is upgraded should be of concern in that the usefulness of the documentation may be
compromised. An application programmer should be knowledgeable about support facilities such as
those discussed above.

30 CMU/SEI-87-TR-14

8. Summary
A basic characteristic of real-time, embedded systems is that they must be able to access the under-
lying architecture of the target machine. This necessitates considering representation clauses and
implementation-dependent features in the Ada language. Thus, the purpose of this report is to pro-
vide a discussion of representation clauses and implementation-dependent features as defined by the
Ada language. Several examples, drawn from mission-critical systems, illustrate the use of represen-
tation clauses and implementation-dependent features. A set of guidelines for considering the use of
representation clauses and implementation-dependent features is included with this report.

This report is the first in a series of reports related to the use of representation clauses and
implementation-dependent features in Ada. The emphasis in this report is on the use of represen-
tation clauses and implementation-dependent features from a machine-independent perspective.
Thus, this report may be viewed as tutorial in nature. Other reports in this series will examine the
assessment of support provided for representation clauses and implementation-dependent features
for particular compilers.

We emphasize that the Ada language satisfies all of the requirements of the case study examples
presented. Of greater importance, however, is the support provided by a particular compiler for the
machine-dependent elements of the language.

The authors would like to acknowledge discussions with colleagues John Nestor, Nelson Weiderman,
and Linda Bürgermeister.

CMU/SEI-TR-14 31

32 CMU/SEI-87-TR-14

References
1. DoD Instruction 5000.31, Interim List of DoD-Approved High-Order Programming

Languages, July 1986. DoD Directive 3405.2, March 30,1987.
2. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada: IIA. Evaluation Questions, CMU/SEI-87-
TR-15, ESD-TR-87-116, July 1987.

3. B. Craig Meyers and Andrea L. Cappellini, 7??e Use of Representation Clauses and
Implementation-Dependent Features in Ada: HB. Experimental Procedures,
CMU/SEI-87-TR-18, ESD-TR-87-126, July 1987.

4. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada: UIA. Qualitative Results for VAX Ada, Ver-
sion 1.3, CMU/SEI-87-TR-17, ESD-TR-87-118, July 1987.

5. J. D. Ichbiah et al., Rationale for the Design of the Ada Programming Language,
SIGPLAN Notices, Vol. 14, No. 6,1979.

6. Reference Manual for the Ada Programming Language, Department of Defense MIL-
STD-1815.1983.

CMU/SEI-TR-14 33

34 CMU/SEI-87-TR-14

Appendix I: Figures
To provide continuity of the text, all figures have been placed together in this appendix.

Figure 1

Format for Message Header

BIT

WORD 0 M|2|3|4|5|6|7 8 |9|10|11|12|13|14 [15

MT 0

1 0 NW —

CMU/SEI-TR-14 35

Figure 2

Package for Message Header

-- This package contains type definitions for implementing the message
- header described in Figure 1.

package Message_Header_Format is

-- Type definitions for data in the message header

type Bit_Value_Type is range 0 .. 1;
for Bit_Value_Type'Size use 1;

type Message_Type is (Navigation, Attitude, Time_and_Status, Test);
for Message_Type use (Navigation => 1, Attitude => 2,

Time_and_Status => 3, Test => 20);

type Number_of_Words_Type is range 1 ..50;

-- Record type and record representation clause that implement the message header
-- Record type specifies the contents of the message and record representation clause
- specifies the position and length of the contents

type Message_Header_Type is
record

Type_of_Message : Message_Type;
Bit_Constant : Bit_Value_Type := 0; -- For 0 bit
Number_of_Words : Number_of_Words_Type;

end record,

for Message_Header_Type use
record

Type_of_Message at 0 range 0 .. 7;
-- 8 bit filler after

Bit_Constant at 2 range 0 .. 0;
Number_of_Words at 2 range 1 ..14;

--1 bit filler after
end record,

end Message_Header_Format;

36 CMU/SEI-87-TR-14

Figure 3

Format for Test Message

BIT

WORD

4

5

0 |1|2|3|4|5|6|7 8 |9 |10 |11|12|13|14| 15

MT

0 NW -

SOURCE

TW3 (upper half)

TW3 (lower half)

TW2 (upper half)

TW2 (lower half)

CMU/SEI-TR-14 37

Figure 4

Package for Test Message

- This package contains the types necessary for implementing the
- test message shown in Figure 3. Notice the use of Message_Header_Type
- that was defined in package Message_Header_Format shown in Figure 2.

with Message_Header_Format;
package Test_Message_Format Is

type Source_Type Is range 0 .. 100;

type Test_Message_Type Is
record

Test_Message_Header: Message_Header_Format.Message_Header_Type;
Source : Source_Type;
Test_Word_3 : Integer;
Test_Word_2 : Integer;

end record,

for Test_Message_Type use
record

Test_Message_Header at 0 range 0 .. 31;
Source at 4 range 0 ..7;

- 8 bit filler after
Test_Word_3 at 8 range 0 .. 31;

-- 1 word filler before
-- 2 word field

Test_Word_2 at 12 range 0 .. 31;
-- 2 word field

end record,

end Test_Message_Format;

38 CMU/SEI-87-TR-14

Figure 5

Format for Navigation Message

BIT

WORD oh |2|3|4|5|6|7|8 9 |10|V I |12 |13|14 I 15

o MT = 1

1 0 NW = 15 —

2 0 ±| LAT

3 LAT(13,6)

4 0 ±I LONG

5 LONG (14, 6)

6
±

SHIP VELOCITY EAST (7,8)

7 ± l SHIP VELOCITY NORTH (7,8)

8 ± I OCEAN VELOCITY EAST (7, 8)

9 ± I OCEAN VELOCITY NORTH (7, 8)

10 ± I SHIP SPEED (7, 8)

CMU/SEI-TR-14 39

Figure 5 (continued)

Format for Navigation Message

BfT

WORD 0;|1 |2|3|4| 5|6|7| 8 | 9 |10 |11 |12|13 |14|15

11 ± CALIBRATION CONSTANT (7, 8)

12 SHIP HEADING (0,16)

13 SHIP PITCH (0,16)

14 SHIP ROLL (0,16)

15
0 ERROR ESTIMATE

(4,4)

16 0 TIME OF GYRO RESET

17 TIME OF GYRO RESET (17,10)

18 0 GMT

19 GMT (17,10)

20 0 SOM GMT

21 SOM GMT (17,10)

40 CMU/SEI-87-TR-14

Figure 5 (continued)

Format for Navigation Message

WORD

22

23

24

25

26

27

28

29

BIT

0 |1 I 2 |3 |4 15 |6 17 |8 19 |10|11112 |13114 115

DISTANCE NORTH

DISTANCE NORTH (31,0)

DISTANCE EAST

DISTANCE EAST (31,0)

TW1 (upper half)

TW1 (lower half)

TWO (upper half)

TWO (lower half)

CMU/SEI-TR-14 41

Figure 6

Package for Navigation Message

-- This package contains type definitions for implementing the
-- navigation message described in Figure 5

with Message_Header_Format;
package Navigation_Message_Format is

- Deltas used for fixed-point types

CC_Del
DMT_Del
EE_Del
OAI_Del
OCV_Del
OLAD_Del
OLOD_Del
OVM_Del

■.constants 2.0" (-8),
: constant :=2.0"(-10);
: constant :=2.0**(-4);
constant :=2.0**(-15);

: constant :=2.0**(-8);
constant :=2.CT(-6);
constant :=2.0"(-6);
constant :=2.0**(-8);

~ Fixed-point types for data in the navigation message

type Calibration_Correction Is delta CC_Del
range -(8.0 - CC_Del).. (8.0 - CC_Del);

type Data_Message_Times Is delta DMT_Del
range 0.0 .. (86399.0 - DMT_Del);

type Error_Estimate Is delta EE_Del
range 0.0 .. (16.0- EE_Del);

type Ocean_Current_Velocities Is delta OCV_Del
range -(11.0 - OCV_Del).. (11.0 - OCV_Del);

type Ownship_Attitude_lnformation Is delta OAI_Del
range 0.0 .. (1.0 - OAI_Del);

type Ownship_Latitude_Data Is delta OLAD_Del
range -5400.0 .. 5400.0;

type Ownship_Longitude_Data Is delta OLOD_Del
range -10800.0 .. 10800.0;

type Ownship_Velocity_lntegrals Is digits 3
range-{0.00V(2.0**30 -1.0)).. (0.00r(2.0"30 -1.0))

type Ownship_Velocity_Measurement Is delta OVM_Del
range -(128.0 - OVM_Del).. (128.0 - OVM_Del);

42 CMU/SEI-87-TR-14

Figure 6 (Continued)

Package for Navigation Message

- Record type and associated record clause for navigation message

type Navigation_Message_Type Is
record
Navigation_Message_Header : Message_Header_Format.Message_Header_Type;
Latitude : Ownship_Latitude_Data;
Longitude : Ownship_Longitude_Data;
East_Velocity_Component : Ownship_Velocity_Measurement;
North_Velocity_Component : Ownship_Velocity_Measurement;
East_Current_Component : Ocean_Current_Velocities;
North_Current_Component : Ocean_Current_Velocities;
Ownship_Speed : Ownship_Velocity_Measurement;
EMLog_Calibration_Correction : Calibration_Correction;
Ownship_Heading : Ownship_Attitude_lnformation;
Ownship_Pitch : Ownship_Attitude_lnformation;
Ownship_Roll : Ownship_Attitude_lnformation;
Radial_Error_Estimate : Error_Estimate;
Time_of_Gyro_Reset : Data_Message_Times;
Greenwich_Mean_Time : Data_Message_Times;
SOM_Greenwich_Mean_Time : Data_Message_Times;
lntegral_Velocity_North : Ownship_Velocity_lntegrals;
lntegral_Velocity_East : Ownship_Velocity_lntegrals;
Test_Word_1 : Integer;
Test_Word_0 : Integer;

end record,

for Navigation_Message_Type use
record

Navigation_Message_Header at 0 range 0 .. 31;
Latitude at 5 range A ..23;
Longitude at 9 range 3 .. 23;
East_Velocity_Component at 12 range 0 ..15;
North_Velocity_Component at 14 range 0 .. 15;
East_Current_Component at 16 range 0 ..15;
North_Current_Component at 18 range 0 .. 15;
Ownship_Speed at 20 range 0 .. 15;
EMLog_Calibration_Correction at 22 range 0 .. 15;
OwnshipJHeading at 24 range 0 .. 15;
Ownship_Pitch at 26 range 0 .. 15;
Ownship_Roll at 28 range 0 ..15;
Radial_Error_Estimate at 31 range 0 .. 7;
Time_of_Gyro_Reset af 32 range 5 .. 31;
Greenwich_Mean_Time at 36 ran^e 5 .. 31;
Som_Greenwich_Mean_Time at 40 range 5 .. 31;
lntegral_Velocity_North af 44 range 0 .. 31;
lntegral_Velocity_East af 48 range 0 .. 31;
Test_Word_1 at 52 range 0 .. 31;
Test_Word_0 at 56 range 0 .. 31;

encf record,

end Navigation_Message_Format;

CMU/SEI-TR-14 ^3

Figure 7a

Package for Analog Data

- This package contains type definitions for implementing the 24-bit
-- analog value described in Section 5.5 of the text

package Analog_Data_Format Is

type Bit_Type Is new Boolean;
for Bit_Type use (False => 0, True =>1);

type Bit_Value_Type Is range 0 .. 1;
for Bit_Value_Type'Size use 1;

type Channel_Type Is range 0 .. 3;
for ChanneMType'Size use 2;

type Data_Array lsarray{\ ..11) of Bit_Value_Type;

type Analog_Data_Type Is
record

Channel : Channel_Type;
Validity_Bit : Bit_Type;
Data_Bits : Data_Array;
Sign_Blt : Bit_Value_Type;
Secondary_Scale_Multiplier : Bit_Value_Type;
Primary_Scale_Multiplier : B*rt_Value_Type;
Zero_Blt : Bit_Value_Type:= 0;

end record,

Heading_Analog_Data: Analog_Data_Type;
for Heading_Analog_Data use at 8#101 #;

-- this address clause specifies the address
- for object Heading_Analog_Data to be
-- 101 base 8

pragma SHARED (Heading_Analog_Data);

Roll_Analog_Data: Analog_Data_Type;
for Roll_Analog_Data use at 8#102#;
pragma SHARED (Roll_Analog_Data);

Speed_Analog_Data: Anatog_Data_Type;
for Speed_Analog_Data use at 8#103#;
pragma SHARED (Speed_Analog_Data);

end Analog_Data_Format;

for Analog_Data_Type use
record

Channel at 0 range 6 .. 7;
Validity_Bit at 0 range 8 ..8;
Data_Blts at 0 range 9 .. 19;
Sign_Blt at 0 range 20 .. 20;
Secondary_Scale_Multiplier at 0 range 21 .. 21;
Primary_Scale_Multiplier at 0 range 22 .. 22;
Zero_Bit at 0 range 23 .. 23;

end record:

44 CMU/SEI-87-TR-14

Figure 7b

Procedure for Analog Data Conversion

-- Procedure Convert_Data takes the data which are mapped to particular
-- addresses and using the specified equation computes the appropriate
- value

with Analog_Data_Format;
procedure Convert_Data Is

- type definitions for computed values

type Heading_Type Is digits 8 range 0.0 .. 360.0;
type Roll_Type Is digits 8 range 0.0 .. 180.0;
type Speed_Type Is digits 8 range 0.0 .. 100.0;

-- object declarations for data

Heading: Heading_Type;
Roll : RollJType;
Speed : Speed_Type;

package ADF renames Analog_Data_Format;

-- functions to perform actual conversions

- See Figure 7C
function Convert_Data_Bits (Source : ADF.Data_Array; Sign : ADF.Bit_Value_Type)

return Float Is separate,

-- See Figure 7D
function Convert_Heading (SourceJHeading : ADF.Analog_Data_Type)

return Heading_Type Is separate,

- See Figure 7E
function Convert_Roll (Source_Roll: ADF.Analog_Data_Type)

return Roll_Type Is separate,

- See Figure 7F
function Convert_Speed (Source_Speed : ADF.Analog_Data_Type)

return Speed_Type Is separate,

CMU/SEI-TR-14 45

Figure 7b (Continued)

Procedure for Analog Data Conversion

begin - Convert_Data

- Validity check on analog data is performed prior to attempting
- any conversion

-- convert heading data
If ADF.Heading_Analog_Data.Validity_Bit = True then

Heading := Convert_Heading (ADF.Heading_Analog_Data);
else

-- raise lnvalid_Heading_Data;
end If,

- convert roll data
//ADF.Roll_Analog_Data.Validity_Bit = True then

Roll := Convert_Roll (ADF.Roll_Analog_Data);
else
- raise InvalidJRollJData;

end It

-- convert speed data
ffADF.Speed_Analog_Data.Validity_Bit = True then

Speed := Convert_Speed (ADF.Speed_Analog_Data);
else
- raise lnvalid_Speed_Data;

end If,

end Convert_Data;

46 CMU/SEI-87-TR-14

Figure 7c

Common Data Bits Conversion Function

- This function converts the data bits found in the analog data
- This conversion is common in ail three conversion equations

with Float_Math_Lib;
separate (Convert_Data)
function Convert_Data_Bits (Source : ADF.Data_Array; Sign : ADF.Bit_Value_Type)

return Float Is

Exponent : Integer range -11 .. 0 :- -11;
Result_Sign : Float;
Temporary : Float := 0.0;

begin - Convert_Data_Bits

-- loop to compute the argument for the Arctan function call
for Index In Source'Range loop

Temporary := Temporary + (2.0**Exponent)*Ftoat(Source(lndex));
Exponent := Exponent + 1;

end loop,

Result_Sign := (-1.0)**Float(Sign);

return (Result_Sign * Ftoat_Math_Lib.ATanD(Temporary));

end Convert_Data_Bits;

CMU/SEI-TR-14 47

Figure 7d

Function to Convert Heading Data

-- This function takes heading analog data as a parameter and returns
- a specific heading value

separate (Convert_Data)
function ConvertJHeading (SourceJHeading : ADF.Analog_Data_Type)

return Heading_Type Is

Temporary : Float;

begin -- ConvertJHeading

-- convert data bits
Temporary := Convert_Data_Bits (Source_Heading.Data_Bits,

Source_Heading.Sign_Bit);

-- computed value returned corresponds to equation found in text
return (Heading_Type(

180.0*Float(Source_Heading.Primary_Scale_Multiplier)
+ 90.0*Float(Source_Heading.Secondary_Scale_Multiplier)
+ Temporary));

end ConvertJHeading;

48 CMU/SEI-87-TR-14

Figure 7e

Function to Convert Roll Data

- This function takes roll analog data as a parameter and returns
- a specific roll value

separate (Convert_Data)
function Convert_Roll (Source_Roll: ADF.Anak>g_Data_Type)

return Rolljype Is

Temporary : Float;

begin - Convert_Roll

-- convert data bits
Temporary := Convert_Data_Bits (Source_Roll.Data_Bits,

Source_Roll.Sign_Bit);

- computed value returned corresponds to equation found in text
return (Roll_Type(90.0*Float(Source_Roll.Primary_Scale_Multiplier)

+ 45.0*Float(Source_Roll.Secondary_Scale_Multiplier)
+ 0.5*Temporary));

encrConvert_Roll;

CMU/SEI-TR-14 49

Figure 71

Function to Convert Speed Data

- This function takes speed analog data as a parameter and returns
-- a specific speed value

separate (Convert_Data)
function Convert_Speed (Source_Speed : ADF.Analog_Data_Type)

return Speed_Type Is

Temporary : Float;

begin -- Convert_Speed

-- convert data bits
Temporary := Convert_Data_Bits (Source_Speed.Data_Bits,

Source_Speed.Sign_Bit);

- computed value returned corresponds to equation found in text
return (Speed_Type ((5.0/18.0)*

(180.0*Float(Source_Speed.Primary_Scale_Multiplier)
+ 90.0Tloat(Source_Speed.Secondary_Scale_Multiplier)
+ Temporary)));

enc/Convert_Speed;

50 CMU/SEI-87-TR-14

Figure 8

Checksum Function for Navigation Message

-- Function Checksum takes a parameter of type Navigation_Message_Type
- and returns the integer checksum of the message

with Unchecked_Conversion;
function Checksum (Navigation_Message : Navigation_Message_Type)

return Integer Is

-- type definitions for representing the message as
-- an array of 16 bit fields
type Field_Type Is range -32768 .. 32767;
for Field_Type'Size use 16;

type Array_of_Fields Is array (0 .. 29) ofTield_Type;

-- instantiation that will result in the specific unchecked conversion
-- function that will take a bit pattern of type Navigation_Message_Type
- and view it as a bit pattern of type Array_of_Fields
function Convert_to_Fields Is new Unchecked_Conversion

(Navigation_Message_Type, Array_of_Fields);

CheckSum_Message : Array_of_Fields;
Sum : Integer := 0;
-- requirements state the sum is to be
- computed as a 32 bit integer

begin

- perform unchecked conversion
CheckSum_Message := Convert_to_Fields(Navigation_Message);

- compute and return the sum of the fields
for\ //) Array_of_Fields' Range loop

Sum := Sum + Integer (CheckSum_Message(l));

end loop,

return Sum;

end Checksum;

CMU/SEI-TR-14 51

Figure 9a

Package for Gyro Status Types

- This package contains the type declarations for representing
-- data about the status of an inertial navigation system gyro

package Gyro_Status Is

type Alignment_Mode_Type Is range 1 .. 12;
type Brts_to_Left_Type Is range 0 .. 16;
type Bits_to_Right_Type Is range 0.. 15;
type Long_Data_Type Is range -(2**31).. (2**31)-1;
type Medium_Data_Type Is range -(2**23).. (2**23)-1;
type Short_Data_Type Is range -(2**15).. (2**15)-1;
type Status_Type Is range 0 .. 1;
type Temperature_Type Is range 0 .. 100;

type INS_Gyro_Data_Type Is
record

Gyro_Alignment_Mode
M
N

Gyro_Temperature
X_Gyro_Torque
Y_Gyro_Torque
Z_Gyro_Torque
A_D_Converter
A_D_Multiplexer
RAM_BIT
Gyro_Power
Velocity_Buffer

end record:
pragma PACK(INS_Gyro_Data

Alignment_Mode_Type;
Blts_to_Left_Type;
Bits_to_Right_Type;
Temperatu re_Type;
Short_Data_Type;
Medium_Data_Type;
Long_Data_Type;
Status_Type;
Status_Type;
Status_Type;
Status_Type;
Status_Type;

i_Type);

~ this is the type that the torque values must be converted to
type Long_Flxed_Type Is delta 2.0**(-15)

range -(2.0**16).. (2.0**16)-1.0;

end Gyro_Status;

52 CMU/SEI-87-TR-14

Figure 9b

Package for Assembler Conversion

- This package contains a function specification for an assembler
~ routine used in converting gyro torque values to a fixed-point type

iv/f/?Gyro_Status;
with System;
package Asem_Convert Is

function Asem_Convert_Fixed (Component: System.Address;
First_Bit_Offset: Integer;
Length : Integer;
Left: Gyro_Status.Bits_to_Left_Type;
Right: Gyro_Status.Bits_to_Right_Type)

return Long_Fixed_Type;

private

pragma INTERFACE (Assembler, Asem_Convert_Fixed);

end Asem_Convert;

CMU/SEI-TR-14 53

Figure 9c

Procedure for Data Encoding of Gyro Status Data

- This procedure converts the torque values given in the parameter
- to a fixed-point type using an assembler routine

with Asem_Convert;
with Gyro_Status; use Gyro_Status;
with System;
procedure Encode_Data (System_Gyro_Data : In INS_Gyro_Data_Type;

Fixed_X_Gyro : out Long_Fixed_Type;
Fixed_Y_Gyro : out Long_Fixed_Type;
Fixed_Z_Gyro : out Long_Fixed_Type) is

Addr : System.Address;
Length : Integer;
Offset : Integer;

package AC renames Asem_Convert;

begin

-- convert x-component of gyro torque
Addr
Offset
Length

= System_Gyro_Data.X_Gyro_Torque'Address;
= System_Gyro_Data.X_Gyro_Torque'First_Bit;
- System_Gyro_Data.X_Gyro_Torque'Last_Bit - Offset + 1;

Fixed_X_Gyro := AC.Asem_Convert_Fixed (Addr, Offset, Length,
System_Gyro_Data.M, System_Gyro_Data.N);

-- convert y-component of gyro torque
Addr := System_Gyro_Data.Y_Gyro_Torque'Address;
Offset := System_Gyro_Data.Y_Gyro_Torque'First_Bit;
Length := System_Gyro_Data.Y_Gyro_Torque'Last_Bit - Offset + 1;

Fixed_Y_Gyro := AC.Asem_Convert_Fixed (Addr, Offset, Length,
System_Gyro_Data.M, System_Gyro_Data.N);

- convert z-component of gyro torque
Addr
Offset
Length

= System_Gyro_Data.Z_Gyro_Torque'Address;
= SystemJ3yro_Data.Z_Gyro_Torque'First_Bit;
= System_Gyro_Data.Z_Gyro_Torque'Last_Bit - Offset + 1;

Fixed_Z_Gyro := AC.Asem_Convert_Fixed (Addr, Offset, Length,
System_Gyro_Data.M, System_Gyro_Data.N);

end Encode_Data;

54 CMU/SEI-87-TR-14

UNLIMITED, 1TNPT AQQTFTFn
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

It REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

NONE
2«. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-14

5. MONITORING ORGANIZATION REPORT NUMBER(S)

EDS-TR-87-115

6« NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTEl SEI

pb. OFFICE SYMBOL
(If applicable)

7«. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c AOORESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. AOORESS (City. State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

8«. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

II. TITLE (Include Security Classification)

The Use of Representation Clauses and Impl

PROJECT
NO.

N/A N/A

emeJntation-Depeddent Features in Ada:

TASK
NO.

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

B. Craig Meyers and Andrea L. Cappellini
I. Overview

13«. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo.. Day)

July 1987
15. PAGE COUNT

56
16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
representation clauses in Ada
implementation-dependent features in Ada
packed data structures
design guidelines

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report, the first in a series, presents an overview of the aspects of the Ada
language relating to representation clauses and implementation-dependent features.
Particular emphasis is given to the use of Ada for application to packed data structures,
This report is in part tutorial, and several examples from real-time, mission-critical
systems are discussed in detail. A brief discussion of design guidelines for the use
of representation clauses and implementation-dependent features is included.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED XX SAME AS RPT. D OTIC USERS ££

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22«. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b. TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

22c OFFICE SYMBOL

SEI JPO

DD FORM 1473 R3 APR EDITION OF 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED

<*

